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ABSTRACT

Advances in online and computer supported education afford
exciting opportunities to revolutionize the classroom, while
also presenting a number of new challenges not faced in tradi-
tional educational settings. Foremost among these challenges
is the problem of accurately and efficiently evaluating learner
work as the class size grows, which is directly related to the
larger goal of providing quality, timely, and actionable forma-
tive feedback. Recently there has been a surge in interest in
using peer grading methods coupled with machine learning
to accurately and fairly evaluate learner work while alleviat-
ing the instructor bottleneck and grading overload. Prior work
in peer grading almost exclusively focuses on numerically
scored grades — either real-valued or ordinal. In this work, we
consider the implications of peer ranking in which learners
rank a small subset of peer work from strongest to weakest,
and propose new types of computational analyses that can be
applied to this ranking data. We adopt a Bayesian approach to
the ranked peer grading problem and develop a novel model
and method for utilizing ranked peer-grading data. We addi-
tionally develop a novel procedure for adaptively identifying
which work should be ranked by particular peers in order to
dynamically resolve ambiguity in the data and rapidly resolve
a clearer picture of learner performance. We showcase our
results on both synthetic and several real-world educational
datasets.

Author Keywords
Automatic grading; peer grading; Bayesian methods; rank
aggregation; adaptive recommender systems

INTRODUCTION

In the shifting landscape of higher education we are seeing
advances in online and hybrid forms of teaching and learn-
ing. From the flipped classroom to the MOOC, these new
formats present opportunities to provide not only high qual-
ity online courses to larger and larger numbers of students,
but also more engaging classroom experiences for 21st cen-
tury learners.
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A common challenge in these experimental formats is how to
meaningfully evaluate student work. The traditional method
of having the instructor evaluate and grade or score each work
is increasingly untenable. In the case of the large classroom or
the online MOOC, having an instructor or team grade by hand
creates an enormous workload bottleneck, leading to delayed
and/or inadequate feedback. Even when the grading work-
load can be distributed among teams of assistants, the central
experience for the student is the same — a single centralized
expert makes an often rapid and subjective judgement on the
work, returning a grade and, at best, some qualitative feed-
back.

Two common approaches to overcoming the traditional grad-
ing bottleneck are machine automation and peer grading. In
machine automation, software is used, most typically to de-
termine right and wrong answers on a test. Often these meth-
ods focus on easy-to-grade question formats such as multi-
ple choice or true/false. Increasingly, these techniques rely
on natural language processing [20] to assess or estimate the
quality of essays or answers. In peer grading, by contrast,
the assessment is “crowdsourced” to the group itself, usually
by providing a rubric or scoring guide to students and asking
them to evaluate one or more peer works, giving one or more
ratings to the work. In addition to being useful in efficiently
evaluating student work, it has been in several educational
contexts the act of giving peer feedback is at least as benefi-
cial to the giver to the receiver of the feedback [12].

While many peer review systems allow for direct written
feedback from peers, they often utilize a rating system as the
primary mode of evaluation. Even with a clearly communi-
cated rubric or guide provided to raters, the ratings can vary
greatly from reviewer to reviewer creating significant noise
in the overall rating data. One way to combat the problem
of rater reliability is to calibrate the raters themselves us-
ing a carefully created demonstration assignment. Raters re-
sponses to this example content are then used to evaluate the
quality of the raters themselves. While this form of calibrated
peer review (CPR) has been shown to be effective [10], it
does require the creation of sample assignments and detailed
multi-question rubrics for each new type of assignment. In
a larger sense, CPR assumes that a students conformity to
the right answers provided by the instructors determines their
value as reviewers. Many kinds of creative work, however,
can be viewed and reviewed from multiple valid viewpoints,
which may serve as the primary value of using peer review in
the classroom.
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An alternative to traditional peer grading in which graders
rate items on a numerical [14] or ordinal scales [8] is to use
ranked peer grading [18]. In this approach, graders rank the
quality of a small number of items in order from best to
worst. While reviewers are often less comfortable provid-
ing a ranked assessments of items [9, 5], ranked approaches
have been shown to often yield significantly more reliable
data with much higher discriminative power than rating data
[2]. Given a set of potentially partially observed ranked data
from a set of graders on a set of items, the goal of the ranked
peer grading problem is to assess the quality of each item rel-
ative to all others.

Prior Work

There has been considerable prior work in the field of rank
aggregation, an excellent summary of which is available in
[16]. These methods include the Mallows method (MAL
[13]) which places a probabilistic distribution over a set of
observed rankings given a ground truth ranking. It can be
shown that using the Kendall’s-7 distance metric that compu-
tation can be carried out quickly for the MAL method, allow-
ing one to find a maximum likelihood estimate of the global
rankings from a set of partially observed rankings. An aug-
mentation of the MAL method is the score-based Mallows
method (MALS, [16]) which estimates pairwise distances be-
tween item to improve the overall robustness of the inference.
Another important method is the Plackett-Luce (PL) model
introduced in [15], which is in turn a generalization of the
Bradley-Terry method [3]. This model has the advantage of
being convex and can be solved quickly using optimization
techniques.

There are three important limitations in the prior rank aggre-
gation and ranked peer grading literature. First, these meth-
ods rely on maximum likelihood estimation and output a sin-
gular point estimate of the true ranking of all items. While
this is useful, it is generally difficult to assess the reliability of
the estimate provided. This reliability information can be ex-
tremely useful to course instructors when assigning grades or
to learners who wish to understand the quality of their work
relative the rest of the class. Second, these methods do not
explicitly model the reliability of the graders themselves, but
rather focus exclusively on finding a ranking of the items that
makes sense given the ranked data. Not all graders in a course
are equally reliable, and by modeling grader reliability ex-
plicitly one can improve the overall inference quality while
additionally relaying this reliability information to course in-
structors. Third, these methods typically assume a random
assignment of items to graders which, especially in the case
of ranked peer grading, fails to take capitalize on the ability
of graders to distinguish between closely related items. This,
in turn, leads to suboptimal inference of item quality.

Contributions

In this paper we develop the BayesRank model and method
for overcoming the limitations of prior work in rank aggrega-
tion and ranked peer grading. Concretely, we make the fol-
lowing three contributions:
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e We develop a novel Bayesian model for partially observed
ranked data. This Bayesian model has the advantage of
explicitly modeling reliability of each grader in addition to
the intrinsic quality of each item.

e We develop a novel Markov-Chain Monte Carlo (MCMC)
method for fitting the BayesRank model to partially ob-
served ranking data. This MCMC method has the advan-
tage of providing not only inference for all model param-
eters of interest but also reliability estimates for those pa-
rameters.

e We develop a novel procedure for adaptively selecting a set
of items to present to a grader in order to reduce our uncer-
tainty about item quality. We will demonstrate that this
method can provide great improvements over the standard
practice of assigning items to graders randomly.

THE BAYESRANK MODEL FOR RANKED PEER GRADING
We now detail the BayesRank generative model for partially
observed ranked data. We assume throughout this work
that we are given ranked peer grading data consisting of
items being ranked by G graders. We further assume that
each grader only ranks a small subset K < [ items. Let
Q9 € {1,...,I}X denote the indices of the items ranked
by grader g. We are ultimately interested in determining the
quality of each item as well as the reliability of each grader
in a given dataset.

We model each item ¢ € {1,...,I} item as possessing an
underlying latent quality score s; € R, where items that have
higher scores are said to have higher quality. We model grader
g as observing a noisy version of the true score s;, Vi € €Y.
Let z9 denote a random vector of observed item qualities ob-
served by grader g, with z7 denoting the observation for item
i. We model 2/ ~ N (s;,07), where N(s;,07) denotes the
standard normal distribution with mean s; and grader-specific
noise variance 03 that determines how accurately grader g

observes the true score s;. Graders with lower 03 are said to
be more reliable than graders with higher 03. Grader g then
returns a ranked set of indices according to the observations
zJ. Let T(;)[z] denote the index of the j™ largest index of z.
Then, grader g returns the rankings r9 = [r{, 7], ... %]
[Ty[29], Ti2)[29], . . ., T(x)[29]]. As we take a Bayesian ap-
proach to our model, all that remains is to specify appropriate
prior distributions for all parameters of interest. For this we
choose standard prior distributions typically used in Bayesian
literature. We formally write our model as:

Si f\'./\/‘(O,O'%)7
Q9 x 1,

oy ~IG(a, B),
z] NN(Si,Uz),

! = [Ty [29), Ti) [29), -, Ty [27]

where ZG(«, ) denotes the inverse-gamma distribution with
shape parameter « and scale parameter /3, and where J%, Q,
and 8 are tunable hyperparameters. We dub our generative

ey
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Figure 1: Graphical model for the generative BayesRank
model

model BayesRank and display this model graphically in Fig-
ure 1.

We note that the BayesRank model is not strictly identifiable.
As a concrete example, a set of scores {s;} and {s; + ¢}
will achieve the same data likelihood. Similarly we can in-
versely scale the grader variance and latent score variance by
any constant ¢ > 0 while maintaining the same data like-
lihood. Consistent with prior art in Bayesian literature, we
rely on our choice of prior and hyperparameters to circum-
vent these issues [8].

INFERENCE METHOD

Given a set of observations {ry} for k 1,...,K and
g = 1,...,G, we wish to infer the latent parameters of
the BayesRank model (1). There are many methods avail-
able for doing this, including expectation-maximization and
variational Bayesian approaches. In this work we will use a
MCMC technique [6] which is simple to implement, efficient,
and provides rich posterior information for all of the model
parameters of interest. This posterior information provides
a wealth of statistical information unavailable under many
other methods and enable us to assert not only an estimate
for each model parameter but also the degree of confidence
that we can assert for these parameter estimates. This poste-
rior information can be used by course instructors to evaluate
the strength of a given item or the reliability of a particular
grader relative to other items and graders in the course.

Our MCMC approach is based on the Gibbs sampler [7]
and estimates the posterior distributions of s; and 03 for
i =1...Tand g = 1...G. We can considerably simplify
our inference by using data augmentation [1] and addition-
ally sampling the noisy latent observations z7. Our method
proceeds by sequentially sampling each random variable of
interest conditioned on all other latent variables in the model.
It can be shown that for our method these distributions are
given by:

20 |~ N (sp 0022 1,22 14), (k,g) € 99,
si| ~ N (7,52%),i€ {1,...,1}
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0% ~IG(@a,B),g € {1,...,G}

where 6-\2 = 1/0% + Zg:iGQQ € (1/03)’ ﬁ = Zg:iéﬂg %’
a + K, and B = B+ Zmem zi The notation

N*(p,0%;a,b) denotes a normal distribution with mean f
and variance o2 truncated below at a and truncated above at
b. This distribution results from the ordering constraint im-
posed by the observations r?9. We adopt the convention that
zp = —oo and zx 41 = 00, consistent with our initial model-
ing assumption s; € R.

Q

POST PROCESSING

After sufficient burn-in, the MCMC produces samples drawn
approximately from the true posterior distribution of each
parameter of interest conditioned on the data in {r{}. We
can obtain simple estimates of the latent score quality s; and
grader reliability o, via simple posterior averaging. Addi-
tionally, we can produce a global ranking of the items at each
iteration of the MCMC which can be used to evaluate the rank
stability of each item relative to all other items in the dataset.

ADAPTIVELY SELECTING ITEMS TO RANK

In formulating the BayesRank model in (1) we assumed ex-
plicitly that graders were assigned items uniformly and inde-
pendently, consistent with the implementation of most peer
grading systems. However, we can hope to do better than
a purely random assignment strategy in practice. First, some
learners in a class may choose not complete their ranked grad-
ing assignment. In this scenario, there may be a variable num-
ber of rankings for each item, which can lead to the scoring
of certain items being more reliable than others. Second, a
ranking of a randomly selected set of items may provide very
little information to a rank aggregation algorithm. As a con-
crete example, the quality difference between the best and
worst item in a dataset may be quite stark. Repeatedly asking
graders to compare these two items yields little useful infor-
mation since there will be little to no diversity in the rankings
provided by multiple graders.

A more powerful approach than random assignment is to as-
sign the items to graders adaptively. Such an adaptive assign-
ment has the potential to capitalize on the ability of a grader
to resolve ambiguous items. Furthermore, this approach is
entirely feasible in many a practical grading scenarios. A spe-
cific example of such a scenario is when graders have some
time frame (e.g., one week) to log into a computer-based sys-
tem to receive and rank a set of items. In this scenario, we
can use knowledge obtained from the last g — 1 graders to
adaptively select items for grader g to rank.

Our selection strategy is based on selecting the items for
grader ¢ that maximize the entropy [4] of the ranking that
grader g will provide. Given a set of K items we can have K
potential rankings. Let Z denote the current set of items and
let sz denote the random variable of the latent quality scores

over the items contained in Z. Now letrZ, j € {1,..., K!}
denote one of the possible ranking permutations over the set
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7. The entropy of the ranking is then given by

Zp log( ))~

We then find the entropy-maximizing set 7 by solving the
following optimization problem

2)

I‘I|SI

7 =arg m?x H(rz|sz).

I,|TI=K

3)

This optimization problem, however, is intractable in most
practical scenarios for two reasons. First, in the case of [
items, we would be required to search over all ( é) sets. Sec-
ond, evaluating the rank-entopy in (2) itself requires compu-
tation on a K + 1-dimensional normal cumulative distribu-
tion function for which there is no closed form solution. Us-
ing full posterior information on sz renders this computation
even more complicated.

We propose two simple approximations that enable us to find
a tractable approximation to the optimization problem (3)
given our MCMC inference method. First, we will use the
posterior mean 8 rather than full posterior information when
calculating the entropy. Thus, H(rz|sz) ~ H(rz|Sz). Sec-
ond, we note that it is simple to construct the entropy max-
imizing set Z for each element item ¢ by searching for the
K — 1 nearest neighbors of item ¢ whose quality scores s; are
closest to s;. Once this is computed for each item, we choose
the item (and neighbors) the minimize the overall square dis-
tance. We display the steps of this procedure in Algorithm 1.

Algorithm 1: Finding the approximate rank-entropy maxi-
mizing set

Data: Item quality means 5;,7 = {1,...,
K
Result: Approximate rank-entropy maximizing set Z
Compute pairwise distance matrix D, s.t. D;; = (5; — §j)2
fori —1toIdo
= [i, T2)[ D], -

diZkl

end

I}, Set cardinality

-5 Ty [Dd]);

i, T (k) [Di]

i= arg mind;;
I=1;

For practical purposes, we would initialize our beliefs about
the item scores to 0 for all items, which would initially cause
our adaptively selection strategy to behave similarly to a ran-
domized selection strategy. As ranked comparisons begin to
be made, however, and the MCMC inference method begins
to infer the quality scores for the individual items, the adap-
tive procedure of Algorithm 1 will begin to start assigning
items to graders that it believes are close together and use the
grader rankings to better resolve those items.
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EXPERIMENTS
Here we characterize the BayesRank model and method using
both synthetic and real-world data experiments.

Synthetic Data

We first examine the performance of BayesRank on synthetic
data generated according to the model described in (1) un-
der a variety of problem configurations. We will compare
our results to the known ground truth item ordering using
Kendall’s-m metric, which examines the general agreement
between two ordered sets of items of size I. For any two
orderings ¢ and &, Kendall’s-7 is defined by:

T L

where sgn(-) denotes the signum function. In words,
Kendall’s-7 looks at each pair in one ranking and compares
the same items in the second ranking to check for consistency.
We note that —1 < D, < 1, with the case D, = 1 cor-
responding to perfect agreement between o and o, the case
D, = —1 corresponding to perfect disagreement between o
and &, and the case D, = 0 corresponding to no correlation
between o and 7.

D, (0,0) = —0j) *xsgn(o; — ),

In each synthetic experiment we will compare BayesRank us-
ing both adaptive and non-adaptive item assignment. Random
assignment is done to ensure that all items receive the same
number of rankings. For the adaptive scenario we employ an
additional constraint that only the items with the fewest num-
ber of rankings be considered for assignment in order to keep
the total number of rankings per item equal, consistent with
both the randomized approach and what would be done in a
real classroom scenario.

We first look at performance as the problem size increases.
We assume here that G = [ N and sweep N €
{10,30,50,100}. We set K = 5,07 = 10,anda = 3 =5
in all experiments. We repeat each configuration over 50 ran-
domized trials and plot the average performance with error
bars in Figure 2(a). We see that both methods degrade grace-
fully as the class size grows, but note that the adaptive item
assessment considerably mitigates this effect, achieving su-
perior performance over all class sizes.

We next examine the performance of BayesRank as the num-
ber of peer rankings, K, varies. We assume a single problem
sizeof G = I = 50 with o; = 10 and @ = 8 = 5 and
sweep K € {2,3,5,10}. We again repeat each configuration
over 50 randomized trials and display our results in 2(b). As
expected, performance improves as the number of peer rank-
ings grows. Importantly, we note that performance begins to
level off at around K = 5, meaning that we can achieve good
performance with a very reasonable number of rankings that
is not burdensome to learners. As before, the adaptive item
selection strategy outperforms the random selection strategy.

We further examine performance as we vary the grader relia-
bility. We again assume a problem size of G = I = 50 with
K = 5 ratings per grader and with o7 = 10. We set o = 3
and sweep o € {1,5,10}. Note that all cases correspond to
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Figure 2: BayesRank synthetic experiments using both random and adaptive item assignment. a) D, as a function of the class
size N, b) D, as a function of the number of items K ranked by each grader, ¢c) D, as a function of the grader reliability

parameter o.

Table 1: D, for various rank aggregation techniques for all four class projects. Size is measured as G x I. BayesRank wins

across all datasets.

Dataset | Size BayesRank | Rank Avg | MAL | MALS | PL

Proj. 1 | 47 x 56 | 0.2971 0.2468 0.2390 | 0.2948 | 0.2779
Proj. 2 | 57 x 60 | 0.4463 0.4328 0.4034 | 0.4362 | 0.4418
Proj. 3 | 48 x 60 | 0.4373 0.3243 0.3096 | 0.4011 | 0.4158
Proj. 4 | 46 x 53 | 0.4441 0.4122 0.3570 | 0.4412 | 0.4354

an expected grader variance of 1 but that we have less prior
variance as « increases. Higher values of « correspond to
the case of less variability in the graders. We repeat each
configuration over 100 trials and display our results in 2(c).
As expected, performance improves as grader reliability im-
proves. The adaptive selection strategy again outperforms the
random selection strategy.

Real-World Educational Data

We now present the results of the analysis of a classroom of
60 learners in a computer programming class taught at Ari-
zona State University. A part of this class consisted in learn-
ers completing four projects that were subsequently evaluated
via ranked peer grading by other learners in the course. Dur-
ing the peer grading phase, each learner who completed their
project was then asked to rank 5 other projects. Not all learn-
ers in the course completed every project, nor did all learn-
ers who completed their project complete their assigned peer
grading task. Thus, for these datasets G # I and not every
item received the same number of rankings. The ranked peer
grader data was collected using the CritViz peer review sys-
tem [19].

In addition to the ranking scores provided by peer graders,
the course instructor and assistants also assigned numerical
quality scores to each project on a (non-integer) scale of 0—
3. This additional numerical scores provide us a ground truth
that can be used for comparison — by sorting the numeri-
cal grades in order we can compare the ranking estimated by
BayesRank to the ground truth under the Kendall’s-m metric.

We compare BayesRank against four other rank aggregation
models: Rank Averaging (in which the final score is simply
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the average of the ranks given to each item), MAL, MALS,
and PL. Our results are displayed in Table 1, where we see
that the BayesRank method achieves superior performance
for all projects under consideration. To put these results
in perspective, recall that the Kendall’s-7 metric counts the
number of ranking agreements between two sets of I items
(a total of I(I — 1) comparisons). For many of our datasets,
the global improvement is relatively small. As an example,
the improvement in BayesRank over MALS for Project 1 is
only 7 rankings. For Project 3, however, the improvement
of BayesRank over MALS is much larger with 76 additional
rankings matching the ground truth.

As discussed previously, our method enables us to make use-
ful inference not only about the final quality of each project
but also how reliably we can make such assertions. We com-
pute this reliability information for each project by comput-
ing the ranking of each item at each iteration of the MCMC.
We examine the statistics of these rankings in Figure 3. Here
we have sorted the items in order by their average ranking
(denoted by the black dot). We additionally show a 50%
Bayesian credible interval as a blue bar showing which rank-
ings are most likely for each item. We note that there is quite
a bit of certainty for objects with very high and very low rank-
ing, while there is considerable variation for item in the mid-
dle rankings.

Finally we show histograms for posterior mean grader relia-
bility parameters 02 for all graders and each project in Fig-
ure 4. Here we find that most graders are highly reliable, with
a small number being less reliable. As discussed previously,
an advantage of the BayesRank approach is that the rankings
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Figure 3: Item ranking credible intervals all four projects. Items are sorted in order of decreasing rank, with rank 1 corresponding
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Figure 4: Histogram of average grader reliability 03 for each grader across all projects. Most graders are highly reliable, but a
small number of graders are less reliable. The BayesRank model naturally uses this information to better assess the quality of all

items.

from the less-reliable graders are naturally de-weighted when
determining the latent item quality parameters.

CONCLUSIONS

Peer grading is a valuable tool for alleviating instructor work-
load in large courses while maintaining a fair standard of
grading. We have developed the BayesRank model and
method for ranked peer grading data which jointly infers the
quality of student as well as the reliability of each peer grader.
Additionally, we have developed a simple method for adap-
tively recommending items to graders that improves the over-
all reliability of the ranked peer grading method.

Our findings point toward several exciting directions for fu-
ture work. First is determining the optimal number of items
to be graded in a single ranking session. The optimal number
is a practical question and must balance not only the needs
of the model but also the cognitive limits of human graders.
Ranking too many items might easily lead to sloppy ranking
and, thus, bad data.

Next, we will pilot a study of an adaptive peer review assign-
ment strategy in which during the review period, reviewers
are assigned to look at specific clusters of work rather than
randomized selections. Our work here points towards the
possibility of greatly increasing the effectiveness of reviews
by using reviewers to tease out the subtle differences between
closely ranked works. In addition, we seek to understand how
students would respond to such a system.

182

Similarly, the instructors can be asked to perform a small
number of timely and carefully selected reviews that might
serve as a real-time calibration, improving overall estimation
not only by direct exposure to instructor review but by an-
choring the entire network of review activity. Additionally,
the model for item quality considered in this work is single
dimensional with every item is modeled by a single quality
parameter. Extensions to the multi-dimensional case [11, 17],
where graders are asked to evaluate over multiple criteria,
is a yet unexplored area. Finally, there may be useful ways
to blend ranking and rating, fusing both ranked (comparing
works) and numerically rated (isolated works) grading data,
allowing for a balance between these two distinct cognitive
activities.
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